MIXING EFFICIENCY IN A FLUIDIZED BED

V. M, Liventsov and A. E. Mozol'kov UDC 66.096.5

The problem of the efficiency of fluidization and pseudoturbulent mixing of an axisymmetric
jet with solid particles is analyzed,

In the majority of technological processes the use of a fluidized bed is determined by the high effi-
ciency of the transfer processes in the bed. The possibility of estimating the mode of greatest mixing and
the effect of the parameters of the "boiling" layer on the mixing efficiency takes on considerable importance
in the selection of the parameters of the "boiling" layer.

In the practical application of a boiling layer, however, irregularities in the concentration of the solid
and gaseous phases develop near the input devices which directly affect the rate of occurrence of the chemi-
cal reaction.

Using the statistical theory developed by Yu. A. Buevich to describe the hydromechanics of disperse
systems one is able to estimate the dependence of the mixing efficiency in the bed on the concentration of
the solid phase and analyze the properties of the mixing of the solid and gaseous phases near the input
devices.

As numerous experiments with fluidized beds and theoretical works [1, 2) show, the pulsations of
solid particles and elements of gas volume play a large role in the description of the hydromechanies of
such layers, provided the Reynolds numbers for the flow over individual particles are not very small,

Taking the latter assumption as satisfied, let us calculate the equivalent temperature of the pseudo-
turbulent pulsations for a system whose solid phase consists of particles of two sizes. According to [3],
the equations for the pulsation components of the velocities and the density can be written in the form
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Here, besides the notation put in the list, we take
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K (p) is a function allowing one to take into account the constraint g () =9, /24 ()24 of the flow over particles
in the system, where the index (j) indicates the number of the type of particles.

Let us move on to the spectral representation for the pulsation components:
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TABLE 1. Variation in Concentration of Solid Phase along Length

of Jet
x==0 i x==10r, I x=20r, x=50r,
I
r=0 —1 —0,24 —0,12 —0,04
r=ry —1/2 —0,27 —0,17 —0,07
r=>5rq 0 —0,01 —0,07 —0,08
o' = { Zeexp i (ot -+ E7)] dodk, @)

where ¢'=p', P', W', V',

Substituting 2) into (1), we find that Eg)=_2$), and zl‘%)=zg)‘, Using these two equalities one can ob-
tain
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The expression for the equivalent temperature of the pulsation motion of particles of the first type
in the vertical plane can be written in the form [3, 4] (the subscript 1 denotes the vertical component)
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Equation (5) for the spectral density p' of the process follows from the theory of steady random proc-
esses [3, 4]; W) is the average velocity of particles of type 1, D) is the pseudoturbulent diffusion ten-
sor of particles of type 1, determined by the expression [3]
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and the symbolic equality‘ to kD(l)l?is denoted by the sum
EkiD ks
i
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We introduce the following notation: b =S_)V.(1)Y<., c =—k.l_).(1ﬁ<., do= T(Si) .
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The integral entering into (5) is easily calcuiated if one assumes that w) =0, i.e., that the particles
of type 1 are at rest on the average.

We will further assume that D{), DY), D) —0; DM=DY, D =pM= D) =D are the components
of the tensor along the principal axes. According to [5] this corresponds to the absence of very small-scale
motions and allowance for only vertical pseudoturbulent pulsations. Then as D )
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Taking w=0 in the expressions for X(w, I<’) and B(ch.) and assuming that the inequalities
BV KBy pofy K dofly, £WE L,

are satisfied, we obtain
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For the streamline mode a flow corresponding to K(p) =1 Eq. (8) takes the form

om = Vpr plox—1p)
5p, (1—p)®

From this it is seen that the maximum equivalent temperature of the pseudoturbulent pulsations (the
maximum statistical indeterminacy of the system) is reached when

= P 9)
=, (

If one takes px=0.6 [1], then from (9) we obtain p =0.4.

Substituting K{p), in the form proposed by Ergun, into (8), we find that @1(1)/\72 has a maximum at p=
0.28. Both the results obtained are in good agreement with the result of [6], where a somewhat different
approach was used to determine the p corresponding to the maximum mixing in a fluidized bed. The tem-
perature obtained as a function of p has a maximum in the interval of 0 <p <1, which agrees well with the
fact, known from experiment and confirmed theoretically [6], of the presence in the system of a state cor-
responding to the maximum statistical indeterminacy.
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The mixing of a gas jet with a stream of a mixture of solid particles and gas can be described using
the mechanism of pseudoturbulent mixing.

The equation of pseudoturbulent diffusion in cylindrical coordinates, according to [1, 2], is written in
the form

dp dp 1 9 7] .0 . dp
v ar + V=W éx r or ) ar e) ax 1 (7) dx (10)
where W, is the velocity of the solid phase, which is taken as constant; Dy (o) and D, {p) are the longitudinal

and transverse coefficients of pseudoturbulent diffusion.

For simplicity, we assume further that V. =0 and V, =V =const ("upper" estimate); moreover,
p =po +py and py «<p,, so that from (10) we obtain
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The boundary condition allowing for the axial symmetry of the jet has the form

pl':I 0, r=>r, at x=0, 12)
| —por r<<ry .

where r; is the radius of the tube through which the vapor is introduced (here it is assumed that the gas

carrying the solid particles moves with the same velocity V, and has the same physical properties as the
vapor introduced into the stream).

Then we can write the solution of Eq. (11) in the form [9]
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If the force of gravity is neglected then the results of {1] can be applied directly to the calculation of
the pseudoturbulent diffusion coefficient Dy (py). Then (for medium Reynolds numbers)

D, (p,) = [3.58* (V) — W02 (0.6—p,)(1.038903 - 0.1473p,-+0.2165)}/[1.3563 (1 — p,)*0.66 (1 — p,) "%, 0 < p, <<0.28,

Dy (pg) = 3 (2p, + 1)*(0-6 — po)(1 — p,)(1.038992 -+ 0.1473p, + 0.2165)}/[1.3563 -0.6-250p,], 0.28 <p, << 0.6, 4

where
B = 9p,/2a%,.

It should be noted that the maximum of the diffusion coefficient Dy (o) is reached at py=0.28, which
agrees well with the results of [6], according to which the maximum mixing in a disperse system is reached
when p;=0.2-0.3 and is qualitatively confirmed by the estimate obtained in the first part of the present
work.

From (14) it is eaiSy to find that v~ —1/2 at py=0.4. For this case (13) takes on a simpler form
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Dividing the region of integration in (15) into two intervals in accordance with the inequalities y/2=
@(y/rg) and performing a series expansion of the radical inside the exponent sign in each of them, we ob-
tain '
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where we are confined in both cases to the highest term in the expansion inside the exponent sign,

If for Vy, Wy, a, dy, pg, 4y, and ry we take the numerical values V=40 m/sec, py=1.4 - 107° N - sec/
m?, Wy=4 m/sec, a =50-10"%m, d; =1200 kg/m?, p(=0.4, and ry=0.2 m, then we have yr,/2nv=0.64, Using
for this case the approximation

siny = y— —
6 t

we obtain analytical expressions for the variation in the concentration of the solid phase in the jet along
the length x for three values of the coordinate r.
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Here &(z) =2/Vr gexp(—ﬁ)dt. The results of calculations by Eqs. (17)-(19) of the relative concentration
pi/pg of the solig phase along the length of the jet are presented in Table 1.

Curves corresponding to the data presented in Table 1 are shown in Fig. 1. Thus, with the help of
Eq. (15) one can estimate the length at which equalization of the concentration of the solid particles occurs.

The average value of the concentration 51 over a cross section can be caleculated from the equation

R
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or using Eq. (15)
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where R is the radius of the outer cylindrical surface confining the system.

Thus, using the spectral theory of the concentration of disperse systems [1, 2] one can solve the
problem of the efficiency of mixing of a homogeneous boiling layer and of the pseudoturbulent mixing of a
vapor jet containing solid particles, which have importance in chemical technology.

NOTATION

- my, my, masses of particles of first and second types; W(J'), velocities of particles of j-th type;

w), pulsation components of particle velocities; V, velocity of fluid phase; Vy, Vi, radial and axial com-
ponents; p, volumetric fraction of solid particles in medium; p', pulsation component of p; d;, density

of fluid phase; V(i)', pulsation component of velocity of fluid phase near a particle of the j-th type; P,
pulsation component of pressure near a particle of the j-th type; u,, viscosity coefficient of fluid phase;

S(p), a function of p allowing for the change in viscosity due fo the presence of solid particles in the medium;
0y, volume of the particle of the j-th type; p}, volumetric fraction of particles of the j-th type; d, density

of material of solid particles; a(}), radius of particles of j-th type; ®(0), equivalent temperature of pseudo-
turbulent pulsations of particles of j-th type; pd), pseudoturbulent diffusion tensor of particles of j-th type;
px, volumetric fraction of solid particles corresponding to close packing.
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